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Abstract - A rigid rectangular box is studied in three-dimensions for finite water depth. The series form of the Green’s function is 
utilized in the determination of added mass and damping due to a rectangular box. The series form used is preferred to the integral 
form as it eliminates the singularity of the integrand at the source and converges uniformly throughout the fluid domain. The results 
obtained in this study were compared with those obtained by using the Gauss Laguerre quadrature method, and there was good 
agreement between the two methods. The present method is robust, uses fewer panels, and efficient since it requires less time. The 
results are presented for added mass and damping in heaving for the rectangular box. 

——————————      —————————— 

 

 

1. INTRODUCTION 

The analysis of the radiation problem on ocean structures is 
essential since it provides information regarding added 
mass and damping of the structures. The information 
obtained forms the core of studying wave, the stability of 
floating structures (Sorensen, 1993), and waves-structure 
interactions (Shen et al., 2005; Lee, 1995). There are two 
approaches used in analyzing radiation problems in fluid 
mechanics. These methods include the time domain and 
frequency domain approaches. Traditionally, the numerical 
solutions of these problems were modelled using the later 
approach. In this study, the frequency domain was adopted. 
The analysis of the rectangular structure was first studied in 
two-dimensional approach (McCormick et al., 2018). 
However, like any other structure, the studies used 
experimental, analytical and numerical methods (Zheng et 
al., 2007). It is worth noting that the experimental method is 
expensive as compared to the other approaches: therefore, 
many research works is based on numerical approach. Wang 
et al. (2012) highlights that of great importance is the effect 
of the surface water waves on offshore structures.  

In this work, the Green function was used to represent the 
potential at the source. Many researchers agree that it is 
difficult to obtain a solution of the Green function due to 
singularity at the source. Therefore, the focus has always 
been aimed at ways of removing the singularity. There are 
many approaches that have since been introduced to 
navigate around the problem. One of the approaches include 
the series form of the Green function which has been 
developed by many researchers in the past for both the finite 
and infinite water depths. Also, other numerical methods 
have been advocated by other researchers depending on the 
type of structure under study. For instance, Endo (1987) used 
the Gauss Laguerre quadrature method in solving the 
principal value of the Green function where results were 
presented in both time and frequency domain approaches in 
investigating shallow water effects on a box. However, the 

process was time consuming due to the number of panels 
used. Researchers are always faced with the problem of 
balancing the time factor and obtaining accurate results in 
any research work. The advancement of science and 
technology in the modern era has since helped in obtaining 
comparably accurate results in a short period. In this regard, 
the series representation of the Green function for a finite 
water depth by Wehausen and Laitone (1960) was adopted. 
The results obtained in this case were compared with those 
in the literature.  

2. MATHEMATICAL FORMULATIONS 

A rectangular coordinate system x, y, z, with the origin at the 
center of the rectangular box that floats freely in water, was 
chosen. The y-axis is taken to be vertical, and the x-axis is in 
the direction on the incoming wave to the box. In this regard, 
the horizontal plane is formed by the x-axis and the z-axis. 
On the basis of linear water-wave theory, a potential 
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The velocity potential  is divided into three components: 

the incident i , diffracted D , and radiated j  potentials. 

The three components must satisfy the Laplace equation (1) 
independently. According to Ngina et al., (2015) and Endo 
(1987), the incident wave potential is represented as; 
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Where, A is the amplitude, h is the depth of water, k is 

wave number and  is the wave frequency. In this study, 

the following boundary conditions were considered, 
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Bottom surface condition 
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Free surface condition                                                                               
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Far-field radiation condition 
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The series Green function is used in finding the radiation 
potential in this case. The series form presented in equation 
(6) has been adapted from Wehausen and Laitone (1960). The 
Green function used in this case satisfies the Laplace 
equation and the boundary conditions.  
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Where  0
r x y z , , ,  1

r a b c , ,   and 
o o

J Y  represents 

the zero order Bessel functions, k  is the wave number, 

2tanh ,  ,k kh v o v g      
2 22R x a y b    . 

The forced motions on the box of the structure generate 
outgoing waves from the source. By using the linearized 
Bernoulli equation, the forces and moments to the rigid 
oscillating rectangular box are used to derive the added 
mass and damping coefficients.  
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Where,   is the density of the fluid. Equation (7) represents 

the added mass coefficient and equation (8) damping 
coefficient.  
 

3. RESULTS AND DISCUSSION 

The rectangular box was taken to have a length (L) of 90 M, 
width (W)of 90M, and a draft (D) of 40 M. The dimensions of 
the box were taken to be the same as those used by Endo 
(1987) due to simulation. The dimensions were made to be 
non-dimensional so that it can be used by other researchers 
with ease. In his regard, all the dimensions were divided by 
draft. The height was taken as a function of the non-

dimensional draft, 1.6 .h D  The rectangular box was 

divided into smaller rectangular panels. According to Ngina 
et al. (2015), the more the number of panels the higher the 
accuracy. However, increasing the number of panels leads to 
an increase in computational time (Du et al., 2012). Hence, 
making the approach to be inefficient. A formula 
transformation software (FORTRAN) was used to model the 
problem and obtained the following results in heave.  
 
 
 

 
Fig. 1. A graph of heave added mass coefficient of 
rectangular box 
 

 
Fig. 2. A graph of heave damping coefficient of rectangular 
box 

 
The y-axis in Fig. 1 and Fig. 2 shows the non-dimensional 

added mass and damping coefficients in heave respectively, 
while the x-axis shows the non-dimensional angular 
frequency. The results in Fig. 1 and Fig. 2 were obtained 
using 42 panels and are similar to those obtained by Endo 
(1987) using 160 panels. This is attributed to the faster 
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convergence of the series form of the Green function, unlike 
its integral form. This shows that one can reduce the number 
of panels used and still obtain accurate results (Beck & 
Liapis, 1987). Therefore, this method is efficient as compared 
to the one used by past researchers. The results are in 
agreement with those obtained by Endo (1987), who 
compared his work against experimental results by 
Oortmerssen (1976). Fig. 1 show that added mass in heave 
decreases as the frequency increases for a rectangular box. 
The results in Fig. 2 shows that damping increases as the 
frequency of the wave increase up to a maximum point 
where it starts to decrease as frequency increases. This is 
indeed true since when frequency approaches infinity, the 
heave damping term becomes zero (Wehausen and Laitone, 
1960). 

 

4. CONCLUSION 

In this paper, a numerical approach to analyzing the 
radiation of a rectangular box in shallow water using the 
series form of Green function is used. The correctness of the 
method used is compared with Gauss Laquerre quadrature 
method. By using the series form of Green function, the 
added mass and damping in heaving are explored. 

REFERENCES 

[1] Beck, R. F., & Liapis, S. (1987). Transient motions of 
floating bodies at zero forward speed. Journal of Ship 
Research, 31(3), 164-176. 

[2] Du, S. X., Hudson, D. A., Price, W. G., & Temarel, P. 
(2012). An investigation into the hydrodynamic analysis 
of vessels with a zero or forward speed. Proceedings of 
the Institution of Mechanical Engineers, Part M: Journal 
of Engineering for the Maritime Environment, 226(2), 
83-102. 

[3] Endo, H. (1987). Shallow-water effect on the motions of 
three-dimensional bodies in waves. Journal of Ship 
Research, 31(1), 34-40. 

[4] Lee, J. F. (1995). On the heave radiation of a rectangular 
structure. Ocean Engineering, 22(1), 19-34. 

[5] McCormick, M. E., Murtha, R. C., & McCormick II, M. E. 
(2018). Empirical deep-water heave added-mass and 
radiation-damping expressions for 2-D rectangular-
sectioned floating bodies. Ocean Engineering, 164, 529-
535. 

[6] Ngina, P. M., Manyanga, D. O., & Kaguchwa, J. N. 
(2015). Wave exciting force on a floating rectangular 
barge due to surface waves. International Journal of 
Scientific & Engineering Research, 6(6), 1480-1486. 

[7] Oortmerssen, G. (1976). The motions of a moored ship in 
waves (No. 510). H. Veenman en Zonen nv. 

[8] Shen, Y. M., Zheng, Y. H., & You, Y. G. (2005). On the 
radiation and diffraction of linear water waves by a 
rectangular structure over a sill. Part I. Infinite domain 
of finite water depth. Ocean Engineering, 32(8-9), 1073-
1097.  

[9] Sorensen, R. M. (1993). Basic wave mechanics: for coastal 
and ocean engineers. John Wiley & Sons. New York. 

ISBN 0-471-55165-1. XVIII, 284  
[10] Wang, K., Zhang, X., Zhang, Z. Q., & Xu, W. (2012). 

Numerical analysis of added mass and damping of 
floating production, storage and offloading system. 
Acta Mechanica Sinica, 28(3), 870-876. 

[11] Wehausen, J. V., & Laitone, E. V. (1960). Surface waves. 

In Fluid Dynamics/Strömungsmechanik (pp. 446-778). 

Springer, Berlin, Heidelberg. 

[12] Zheng, Y. H., Shen, Y. M., & Tang, J. (2007). Radiation 
and diffraction of linear water waves by an infinitely 
long submerged rectangular structure parallel to a 
vertical wall. Ocean engineering, 34(1), 69-82. 

 
Juma C. Membo*, Manyanga D. Ondiek, Gathia P. Wanjiru,  
Mathematics Department, Egerton University, 536-20115 

 Egerton, Kenya 
*membojuma@gmail.com 

 

IJSER

http://www.ijser.org/



